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Abstract 

A Cauchy algebraic polynomial is a random algebraic polynomial    
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whose coefficients are independent real-valued random variables with a common Cauchy distribution then for every 

large enough integer 𝑛0,   
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where s is a finite number greater than 2+β; 0< β<1 and μ’s are positive constants.For this theorem we get, for s>3, 

a probability less than 
β1n/''μ 
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1. Introduction 

A Cauchy algebraic polynomial is a random algebraic polynomial, 
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whose coefficients are independent real-valued random variables with a common Cauchy distribution. Let Nn(w) 

and E(Nn) denote the number of real roots and its mathematical expectation, of the random equations )w,x(
n

f =0, 

Logan and Shepp [1] have shown that  
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Using this one gets that 

   )n/(log''μ)n(log'μNP 2

nr
  

 where μ’s are positive constants. 

 Samal and Mishra [2] have considered the upper bound of Nn(w) where the coefficients are identically 

distributed independent random variables with a common characteristic function exp (-Ctα), where C is a positive 

constant and 1 2α  . They have obtained that  
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where 1β0  . This covers the Cauchy case for α=1 

 In [2], Samal and Mishra have employed the Inversion Formula to obtain certain probability estimates. In 
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this note we show that in case of Cauchy polynomials with identically distributed coefficients such estimates can be 

obtained by using the density function. We show that the probability that 
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is smaller than 
β1

0n/''μ


in the Cauchy case. In fact, the probability we have estimated can be made arbitrarily 

small. Precisely, we prove the following theorem:  

2.        THEOREM 

 Let fn(x,w) be a Cauchy algebraic polynomial of degree n. Then for every large enough integer n0, 
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where s is a finite number greater than 2+β; 0< β<1 and μ’s are positive constants. 

 For this theorem we get, for s>3, a probability less than 
β1n/''μ 

 

 In the proof of the theorem we need the following lemma which is a well-known result.  

2.1     Lemma       
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Be a continuous random variable with probability density pn(w). Then  
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is a continuous random variable with probability density 
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In what follows we have assumed n to be sufficiently large for the inequalities to hold and we have used μ’s to 

denote positive constants not necessarily having the same value from one place of occurrence to the other.  

 Proof of the theorem  

 We refer to the proof of Samal and Mishra [2] and indicate only the important steps or modifications, 

always with α=1 for the Cauchy case. It follows as in [2; p.600] that  
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with a probability greater than     1)(n/μ-1 1-s  

Again, the probability density of ak(w), k=0,1,………..n is given by  
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c being a positive constant, We put it as  
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otherwise 
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 Let Pn(w) be the probability density of 
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and in general  
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 Using this, the lemma gives  
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Now 
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Putting 
1sn/1  , this gives 
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Using (2.1) and (2.7) we obtain that with a probability greater than  1sn/μ1   the number of zeros of fn (x) in 

Cm is at most µ(logn). Considering all the circles the total number of zeros inside all the circles C0, C1,………Ck, 

Cplogn is at most µ(logn)2m with a probability of measure at least 

  .1β0;n/μ1n/)n(logμ1 β1s''1s'  
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*
 is at most )n(logμ  with probability larger than .n/μ1 β1s   
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where s is a finite number greater than 2+β 

This completes the proof. 

 

3.   CONCLUSION  

 Considering a Cauchy random algebraic polynomial of the form 
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whose coefficients are independent real-valued random variables with a common Cauchy distribution then for every 

large enough integer n0,the the expected number of zeros of the above polynomial  
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where s is a finite number greater than 2+β; 0< β<1 and μ’s are positive constants.For this theorem we get, for s>3, 

a probability less than 
β1n/''μ 
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